Fefferman multiplier theorem for Hardy martingales (2509.07616v1)
Abstract: A well-known theorem due to Fefferman provides a characterization of Fourier multipliers from $H1(\mathbb{T})$ to $\ell1$, i.e. sequences $\left(\lambda_n\right){n=0}\infty$ such that [\sum{n=0}\infty \left|\lambda_n \widehat{f}(n)\right|\lesssim |f|{L1(\mathbb{T})},] where $f(x)=\sum{n=0}\infty \widehat{f}(n)e{inx}$. We extend it to the space $H1\left(\mathbb{T}\mathbb{N}\right)$ of Hardy martingales, i.e. the subspace of $L1$ on the countable product $\mathbb{T}\mathbb{N}$ consisting of all $f$ such that the differences $\Delta_nf=f_{n}-f_{n-1}$ of the martingale wrt the standard filtration generated by $f$ satisfy [\left(t\mapsto \Delta_n f\left(x_1,\ldots,x_{n-1},t\right)\right)\in H1(\mathbb{T}). ] The key ingredient is a theorem due to P. F. X. M\"uller stating that the classical Davis-Garsia decomposition [\mathbb{E} \left(\sum_{n=0}\infty \left|\Delta_n f\right|2\right)\frac{1}{2}\simeq \inf_{f=g+h} \mathbb{E}\sum_{n=0}\infty \left|\Delta_n g\right|+ \mathbb{E}\left(\sum_{n=0}\infty \mathbb{E}\left(\left|\Delta_n f\right|2\mid \mathcal{F}_{n-1}\right)\right)\frac{1}{2}] may be done within the space of Hardy martingales.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.