Papers
Topics
Authors
Recent
2000 character limit reached

Mitigating Attention Localization in Small Scale: Self-Attention Refinement via One-step Belief Propagation (2509.07324v1)

Published 9 Sep 2025 in cs.CL and cs.AI

Abstract: Transformer-based self-attention mechanism serves as the core of modern LLMs, yet it often suffers from localization, where attentions collapse onto a limited subset of tokens and fail to capture long-range dependencies. To address this issue, we propose Self-Attention One-step Belief Propagation (SAOBP), a refinement framework that injects multi-hop relationships through a belief propagation process. To interpret and quantify these interactions, we introduce Global Token Dependency (GTD) that captures the relative contribution of multihop connections within the attention graph. Empirical results indicate that SAOBP helps prevent entropy collapse in deeper layers and adaptively maintains GTD at task-appropriate levels, thereby supporting improvements in model performance. Importantly, we observe competitive gains in small-scale models, highlighting its potential for improving inference quality in resource-constrained scenarios.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.