MedBench-IT: A Comprehensive Benchmark for Evaluating Large Language Models on Italian Medical Entrance Examinations (2509.07135v1)
Abstract: LLMs show increasing potential in education, yet benchmarks for non-English languages in specialized domains remain scarce. We introduce MedBench-IT, the first comprehensive benchmark for evaluating LLMs on Italian medical university entrance examinations. Sourced from Edizioni Simone, a leading preparatory materials publisher, MedBench-IT comprises 17,410 expert-written multiple-choice questions across six subjects (Biology, Chemistry, Logic, General Culture, Mathematics, Physics) and three difficulty levels. We evaluated diverse models including proprietary LLMs (GPT-4o, Claude series) and resource-efficient open-source alternatives (<30B parameters) focusing on practical deployability. Beyond accuracy, we conducted rigorous reproducibility tests (88.86% response consistency, varying by subject), ordering bias analysis (minimal impact), and reasoning prompt evaluation. We also examined correlations between question readability and model performance, finding a statistically significant but small inverse relationship. MedBench-IT provides a crucial resource for Italian NLP community, EdTech developers, and practitioners, offering insights into current capabilities and standardized evaluation methodology for this critical domain.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.