Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

A Minimalist Bayesian Framework for Stochastic Optimization (2509.07030v1)

Published 7 Sep 2025 in cs.LG, cs.AI, and stat.ML

Abstract: The Bayesian paradigm offers principled tools for sequential decision-making under uncertainty, but its reliance on a probabilistic model for all parameters can hinder the incorporation of complex structural constraints. We introduce a minimalist Bayesian framework that places a prior only on the component of interest, such as the location of the optimum. Nuisance parameters are eliminated via profile likelihood, which naturally handles constraints. As a direct instantiation, we develop a MINimalist Thompson Sampling (MINTS) algorithm. Our framework accommodates structured problems, including continuum-armed Lipschitz bandits and dynamic pricing. It also provides a probabilistic lens on classical convex optimization algorithms such as the center of gravity and ellipsoid methods. We further analyze MINTS for multi-armed bandits and establish near-optimal regret guarantees.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 12 likes.

Upgrade to Pro to view all of the tweets about this paper: