Papers
Topics
Authors
Recent
2000 character limit reached

HAVE: Head-Adaptive Gating and ValuE Calibration for Hallucination Mitigation in Large Language Models (2509.06596v1)

Published 8 Sep 2025 in cs.CL and cs.AI

Abstract: LLMs often produce hallucinations in retrieval-augmented or long-context generation, even when relevant evidence is present. This stems from two issues: head importance is treated as input-agnostic, and raw attention weights poorly reflect each token's true contribution. We present HAVE (Head-Adaptive Gating and ValuE Calibration), a parameter-free decoding framework that directly addresses both challenges. HAVE introduces head-adaptive gating, which performs instance-level soft reweighing of attention heads, and value calibration, which augments attention with the magnitude of value vectors to approximate write-back contribution. Together, these modules construct token-level evidence aligned with model updates and fuse it with the LM distribution through a lightweight uncertainty-scaled policy. HAVE requires no finetuning and operates in a single forward pass, making it efficient and broadly applicable. Experiments across multiple QA benchmarks and LLM families demonstrate that HAVE consistently reduces hallucinations and outperforms strong baselines, including DAGCD, with modest overhead. The framework is transparent, reproducible, and readily integrates with off-the-shelf LLMs, advancing trustworthy generation in real-world settings.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.