Papers
Topics
Authors
Recent
2000 character limit reached

Tackling Device Data Distribution Real-time Shift via Prototype-based Parameter Editing (2509.06552v1)

Published 8 Sep 2025 in cs.LG, cs.CV, cs.DC, and cs.IR

Abstract: The on-device real-time data distribution shift on devices challenges the generalization of lightweight on-device models. This critical issue is often overlooked in current research, which predominantly relies on data-intensive and computationally expensive fine-tuning approaches. To tackle this, we introduce Persona, a novel personalized method using a prototype-based, backpropagation-free parameter editing framework to enhance model generalization without post-deployment retraining. Persona employs a neural adapter in the cloud to generate a parameter editing matrix based on real-time device data. This matrix adeptly adapts on-device models to the prevailing data distributions, efficiently clustering them into prototype models. The prototypes are dynamically refined via the parameter editing matrix, facilitating efficient evolution. Furthermore, the integration of cross-layer knowledge transfer ensures consistent and context-aware multi-layer parameter changes and prototype assignment. Extensive experiments on vision task and recommendation task on multiple datasets confirm Persona's effectiveness and generality.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.