Crown, Frame, Reverse: Layer-Wise Scaling Variants for LLM Pre-Training (2509.06518v1)
Abstract: Transformer-based LLMs traditionally use uniform (isotropic) layer sizes, yet they ignore the diverse functional roles that different depths can play and their computational capacity needs. Building on Layer-Wise Scaling (LWS) and pruning literature, we introduce three new LWS variants - Framed, Reverse, and Crown - that redistribute FFN widths and attention heads via two or three-point linear interpolation in the pre-training stage. We present the first systematic ablation of LWS and its variants, on a fixed budget of 180M parameters, trained on 5B tokens. All models converge to similar losses and achieve better performance compared to an equal-cost isotropic baseline, without a substantial decrease in training throughput. This work represents an initial step into the design space of layer-wise architectures for pre-training, but future work should scale experiments to orders of magnitude more tokens and parameters to fully assess their potential.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.