Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

MORSE: Multi-Objective Reinforcement Learning via Strategy Evolution for Supply Chain Optimization (2509.06490v1)

Published 8 Sep 2025 in cs.AI

Abstract: In supply chain management, decision-making often involves balancing multiple conflicting objectives, such as cost reduction, service level improvement, and environmental sustainability. Traditional multi-objective optimization methods, such as linear programming and evolutionary algorithms, struggle to adapt in real-time to the dynamic nature of supply chains. In this paper, we propose an approach that combines Reinforcement Learning (RL) and Multi-Objective Evolutionary Algorithms (MOEAs) to address these challenges for dynamic multi-objective optimization under uncertainty. Our method leverages MOEAs to search the parameter space of policy neural networks, generating a Pareto front of policies. This provides decision-makers with a diverse population of policies that can be dynamically switched based on the current system objectives, ensuring flexibility and adaptability in real-time decision-making. We also introduce Conditional Value-at-Risk (CVaR) to incorporate risk-sensitive decision-making, enhancing resilience in uncertain environments. We demonstrate the effectiveness of our approach through case studies, showcasing its ability to respond to supply chain dynamics and outperforming state-of-the-art methods in an inventory management case study. The proposed strategy not only improves decision-making efficiency but also offers a more robust framework for managing uncertainty and optimizing performance in supply chains.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube