Reinforcement Learning for Multi-Objective Multi-Echelon Supply Chain Optimisation (2507.19788v1)
Abstract: This study develops a generalised multi-objective, multi-echelon supply chain optimisation model with non-stationary markets based on a Markov decision process, incorporating economic, environmental, and social considerations. The model is evaluated using a multi-objective reinforcement learning (RL) method, benchmarked against an originally single-objective RL algorithm modified with weighted sum using predefined weights, and a multi-objective evolutionary algorithm (MOEA)-based approach. We conduct experiments on varying network complexities, mimicking typical real-world challenges using a customisable simulator. The model determines production and delivery quantities across supply chain routes to achieve near-optimal trade-offs between competing objectives, approximating Pareto front sets. The results demonstrate that the primary approach provides the most balanced trade-off between optimality, diversity, and density, further enhanced with a shared experience buffer that allows knowledge transfer among policies. In complex settings, it achieves up to 75\% higher hypervolume than the MOEA-based method and generates solutions that are approximately eleven times denser, signifying better robustness, than those produced by the modified single-objective RL method. Moreover, it ensures stable production and inventory levels while minimising demand loss.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.