Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 56 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Cross3DReg: Towards a Large-scale Real-world Cross-source Point Cloud Registration Benchmark (2509.06456v1)

Published 8 Sep 2025 in cs.CV

Abstract: Cross-source point cloud registration, which aims to align point cloud data from different sensors, is a fundamental task in 3D vision. However, compared to the same-source point cloud registration, cross-source registration faces two core challenges: the lack of publicly available large-scale real-world datasets for training the deep registration models, and the inherent differences in point clouds captured by multiple sensors. The diverse patterns induced by the sensors pose great challenges in robust and accurate point cloud feature extraction and matching, which negatively influence the registration accuracy. To advance research in this field, we construct Cross3DReg, the currently largest and real-world multi-modal cross-source point cloud registration dataset, which is collected by a rotating mechanical lidar and a hybrid semi-solid-state lidar, respectively. Moreover, we design an overlap-based cross-source registration framework, which utilizes unaligned images to predict the overlapping region between source and target point clouds, effectively filtering out redundant points in the irrelevant regions and significantly mitigating the interference caused by noise in non-overlapping areas. Then, a visual-geometric attention guided matching module is proposed to enhance the consistency of cross-source point cloud features by fusing image and geometric information to establish reliable correspondences and ultimately achieve accurate and robust registration. Extensive experiments show that our method achieves state-of-the-art registration performance. Our framework reduces the relative rotation error (RRE) and relative translation error (RTE) by $63.2\%$ and $40.2\%$, respectively, and improves the registration recall (RR) by $5.4\%$, which validates its effectiveness in achieving accurate cross-source registration.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.