Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

HyFedRAG: A Federated Retrieval-Augmented Generation Framework for Heterogeneous and Privacy-Sensitive Data (2509.06444v1)

Published 8 Sep 2025 in cs.AI

Abstract: Centralized RAG pipelines struggle with heterogeneous and privacy-sensitive data, especially in distributed healthcare settings where patient data spans SQL, knowledge graphs, and clinical notes. Clinicians face difficulties retrieving rare disease cases due to privacy constraints and the limitations of traditional cloud-based RAG systems in handling diverse formats and edge devices. To address this, we introduce HyFedRAG, a unified and efficient Federated RAG framework tailored for Hybrid data modalities. By leveraging an edge-cloud collaborative mechanism, HyFedRAG enables RAG to operate across diverse data sources while preserving data privacy. Our key contributions are: (1) We design an edge-cloud collaborative RAG framework built on Flower, which supports querying structured SQL data, semi-structured knowledge graphs, and unstructured documents. The edge-side LLMs convert diverse data into standardized privacy-preserving representations, and the server-side LLMs integrates them for global reasoning and generation. (2) We integrate lightweight local retrievers with privacy-aware LLMs and provide three anonymization tools that enable each client to produce semantically rich, de-identified summaries for global inference across devices. (3) To optimize response latency and reduce redundant computation, we design a three-tier caching strategy consisting of local cache, intermediate representation cache, and cloud inference cache. Experimental results on PMC-Patients demonstrate that HyFedRAG outperforms existing baselines in terms of retrieval quality, generation consistency, and system efficiency. Our framework offers a scalable and privacy-compliant solution for RAG over structural-heterogeneous data, unlocking the potential of LLMs in sensitive and diverse data environments.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube