Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

FineServe: Precision-Aware KV Slab and Two-Level Scheduling for Heterogeneous Precision LLM Serving (2509.06261v1)

Published 8 Sep 2025 in cs.DC and cs.LG

Abstract: Recent advances in Post-Training Quantization (PTQ) techniques have significantly increased demand for serving quantized LLMs, enabling higher throughput and substantially reduced memory usage with minimal accuracy loss. Quantized models address memory constraints in LLMs and enhance GPU resource utilization through efficient GPU sharing. However, quantized models have smaller KV block sizes than non-quantized models, causing limited memory efficiency due to memory fragmentation. Also, distinct resource usage patterns between quantized and non-quantized models require efficient scheduling to maximize throughput. To address these challenges, we propose FineServe, an inference serving framework for mixed-precision LLMs. FineServe's key contributions include: (1) KV Slab, a precision-aware adaptive memory management technique dynamically allocating KV cache based on model quantization characteristics, significantly reducing GPU memory fragmentation, and (2) a two-level scheduling framework comprising a global scheduler that places models to GPUs based on request rates, latency SLOs, and memory constraints and efficiency, and a local scheduler that adaptively adjusts batch sizes according to real-time request fluctuations. Experimental results demonstrate that FineServe achieves up to 2.2x higher SLO attainment and 1.8x higher token generation throughput compared to the state-of-the-art GPU sharing systems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.