Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Time-Embedded Convolutional Neural Networks for Modeling Plasma Heat Transport (2509.06088v1)

Published 7 Sep 2025 in physics.plasm-ph

Abstract: We introduce a time-embedded convolutional neural network (TCNN) for modeling spatiotemporal heat transport in plasmas, particularly under strongly nonlocal conditions. In our earlier work, the LMV-Informed Neural Network (LINN) (Luo et al., arXiv:2506.16619) combined prior knowledge from the LMV model with kinetic Particle-in-Cell (PIC) data to improve kernel-based heat-flux predictions. While effective under moderately nonlocal conditions, LINN produced physically inconsistent kernels in strongly time-dependent regimes due to its reliance on the quasi-stationary LMV formulation. To overcome this limitation, TCNN is designed to capture the coupled evolution of both the normalized heat flux and the characteristic nonlocality parameter using a unified neural architecture informed by underlying physical principles. Trained on fully kinetic PIC simulations, TCNN accurately reproduces nonlocal dynamics across a broad range of collisionalities. Our results demonstrate that the combination of time modulation, coupled prediction, and convolutional depth significantly enhances predictive performance, offering a data-driven yet physically consistent framework for multiscale plasma transport problems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: