Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Micro-Expression Recognition via Fine-Grained Dynamic Perception (2509.06015v1)

Published 7 Sep 2025 in cs.CV

Abstract: Facial micro-expression recognition (MER) is a challenging task, due to the transience, subtlety, and dynamics of micro-expressions (MEs). Most existing methods resort to hand-crafted features or deep networks, in which the former often additionally requires key frames, and the latter suffers from small-scale and low-diversity training data. In this paper, we develop a novel fine-grained dynamic perception (FDP) framework for MER. We propose to rank frame-level features of a sequence of raw frames in chronological order, in which the rank process encodes the dynamic information of both ME appearances and motions. Specifically, a novel local-global feature-aware transformer is proposed for frame representation learning. A rank scorer is further adopted to calculate rank scores of each frame-level feature. Afterwards, the rank features from rank scorer are pooled in temporal dimension to capture dynamic representation. Finally, the dynamic representation is shared by a MER module and a dynamic image construction module, in which the former predicts the ME category, and the latter uses an encoder-decoder structure to construct the dynamic image. The design of dynamic image construction task is beneficial for capturing facial subtle actions associated with MEs and alleviating the data scarcity issue. Extensive experiments show that our method (i) significantly outperforms the state-of-the-art MER methods, and (ii) works well for dynamic image construction. Particularly, our FDP improves by 4.05%, 2.50%, 7.71%, and 2.11% over the previous best results in terms of F1-score on the CASME II, SAMM, CAS(ME)2, and CAS(ME)3 datasets, respectively. The code is available at https://github.com/CYF-cuber/FDP.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com