Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Survey of Real-World Recommender Systems: Challenges, Constraints, and Industrial Perspectives (2509.06002v1)

Published 7 Sep 2025 in cs.IR

Abstract: Recommender systems have generated tremendous value for both users and businesses, drawing significant attention from academia and industry alike. However, due to practical constraints, academic research remains largely confined to offline dataset optimizations, lacking access to real user data and large-scale recommendation platforms. This limitation reduces practical relevance, slows technological progress, and hampers a full understanding of the key challenges in recommender systems. In this survey, we provide a systematic review of industrial recommender systems and contrast them with their academic counterparts. We highlight key differences in data scale, real-time requirements, and evaluation methodologies, and we summarize major real-world recommendation scenarios along with their associated challenges. We then examine how industry practitioners address these challenges in Transaction-Oriented Recommender Systems and Content-Oriented Recommender Systems, a new classification grounded in item characteristics and recommendation objectives. Finally, we outline promising research directions, including the often-overlooked role of user decision-making, the integration of economic and psychological theories, and concrete suggestions for advancing academic research. Our goal is to enhance academia's understanding of practical recommender systems, bridge the growing development gap, and foster stronger collaboration between industry and academia.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)