Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Motion Aware ViT-based Framework for Monocular 6-DoF Spacecraft Pose Estimation (2509.06000v1)

Published 7 Sep 2025 in cs.CV

Abstract: Monocular 6-DoF pose estimation plays an important role in multiple spacecraft missions. Most existing pose estimation approaches rely on single images with static keypoint localisation, failing to exploit valuable temporal information inherent to space operations. In this work, we adapt a deep learning framework from human pose estimation to the spacecraft pose estimation domain that integrates motion-aware heatmaps and optical flow to capture motion dynamics. Our approach combines image features from a Vision Transformer (ViT) encoder with motion cues from a pre-trained optical flow model to localise 2D keypoints. Using the estimates, a Perspective-n-Point (PnP) solver recovers 6-DoF poses from known 2D-3D correspondences. We train and evaluate our method on the SPADES-RGB dataset and further assess its generalisation on real and synthetic data from the SPARK-2024 dataset. Overall, our approach demonstrates improved performance over single-image baselines in both 2D keypoint localisation and 6-DoF pose estimation. Furthermore, it shows promising generalisation capabilities when testing on different data distributions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.