Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

GKNet: Graph-based Keypoints Network for Monocular Pose Estimation of Non-cooperative Spacecraft (2507.11077v1)

Published 15 Jul 2025 in cs.CV

Abstract: Monocular pose estimation of non-cooperative spacecraft is significant for on-orbit service (OOS) tasks, such as satellite maintenance, space debris removal, and station assembly. Considering the high demands on pose estimation accuracy, mainstream monocular pose estimation methods typically consist of keypoint detectors and PnP solver. However, current keypoint detectors remain vulnerable to structural symmetry and partial occlusion of non-cooperative spacecraft. To this end, we propose a graph-based keypoints network for the monocular pose estimation of non-cooperative spacecraft, GKNet, which leverages the geometric constraint of keypoints graph. In order to better validate keypoint detectors, we present a moderate-scale dataset for the spacecraft keypoint detection, named SKD, which consists of 3 spacecraft targets, 90,000 simulated images, and corresponding high-precise keypoint annotations. Extensive experiments and an ablation study have demonstrated the high accuracy and effectiveness of our GKNet, compared to the state-of-the-art spacecraft keypoint detectors. The code for GKNet and the SKD dataset is available at https://github.com/Dongzhou-1996/GKNet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube