Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

GRACE: Graph-Guided Repository-Aware Code Completion through Hierarchical Code Fusion (2509.05980v1)

Published 7 Sep 2025 in cs.SE

Abstract: LLMs excel in localized code completion but struggle with repository-level tasks due to limited context windows and complex semantic and structural dependencies across codebases. While Retrieval-Augmented Generation (RAG) mitigates context scarcity by retrieving relevant code snippets, current approaches face significant limitations. They overly rely on textual similarity for retrieval, neglecting structural relationships such as call chains and inheritance hierarchies, and lose critical structural information by naively concatenating retrieved snippets into text sequences for LLM input. To address these shortcomings, GRACE constructs a multi-level, multi-semantic code graph that unifies file structures, abstract syntax trees, function call graphs, class hierarchies, and data flow graphs to capture both static and dynamic code semantics. For retrieval, GRACE employs a Hybrid Graph Retriever that integrates graph neural network-based structural similarity with textual retrieval, refined by a graph attention network-based re-ranker to prioritize topologically relevant subgraphs. To enhance context, GRACE introduces a structural fusion mechanism that merges retrieved subgraphs with the local code context and preserves essential dependencies like function calls and inheritance. Extensive experiments on public repository-level benchmarks demonstrate that GRACE significantly outperforms state-of-the-art methods across all metrics. Using DeepSeek-V3 as the backbone LLM, GRACE surpasses the strongest graph-based RAG baselines by 8.19% EM and 7.51% ES points on every dataset. The code is available at https://anonymous.4open.science/r/grace_icse-C3D5.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.