Papers
Topics
Authors
Recent
2000 character limit reached

Meta-training of diffractive meta-neural networks for super-resolution direction of arrival estimation

Published 7 Sep 2025 in physics.optics, cs.AI, and physics.app-ph | (2509.05926v1)

Abstract: Diffractive neural networks leverage the high-dimensional characteristics of electromagnetic (EM) fields for high-throughput computing. However, the existing architectures face challenges in integrating large-scale multidimensional metasurfaces with precise network training and haven't utilized multidimensional EM field coding scheme for super-resolution sensing. Here, we propose diffractive meta-neural networks (DMNNs) for accurate EM field modulation through metasurfaces, which enable multidimensional multiplexing and coding for multi-task learning and high-throughput super-resolution direction of arrival estimation. DMNN integrates pre-trained mini-metanets to characterize the amplitude and phase responses of meta-atoms across different polarizations and frequencies, with structure parameters inversely designed using the gradient-based meta-training. For wide-field super-resolution angle estimation, the system simultaneously resolves azimuthal and elevational angles through x and y-polarization channels, while the interleaving of frequency-multiplexed angular intervals generates spectral-encoded optical super-oscillations to achieve full-angle high-resolution estimation. Post-processing lightweight electronic neural networks further enhance the performance. Experimental results validate that a three-layer DMNN operating at 27 GHz, 29 GHz, and 31 GHz achieves $\sim7\times$ Rayleigh diffraction-limited angular resolution (0.5$\circ$), a mean absolute error of 0.048$\circ$ for two incoherent targets within a $\pm 11.5\circ$ field of view, and an angular estimation throughput an order of magnitude higher (1917) than that of existing methods. The proposed architecture advances high-dimensional photonic computing systems by utilizing inherent high-parallelism and all-optical coding methods for ultra-high-resolution, high-throughput applications.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.