X-SQL: Expert Schema Linking and Understanding of Text-to-SQL with Multi-LLMs (2509.05899v1)
Abstract: With LLMs' (LLMs) emergent abilities on code generation tasks, Text-to-SQL has become one of the most popular downstream applications. Despite the strong results of multiple recent LLM-based Text-to-SQL frameworks, the research community often overlooks the importance of database schema information for generating high-quality SQL queries. We find that such schema information plays a significant or even dominant role in the Text-to-SQL task. To tackle this challenge, we propose a novel database schema expert with two components. We first introduce X-Linking, an LLM Supervised Finetuning (SFT)-based method that achieves superior Schema Linking results compared to existing open-source Text-to-SQL methods. In addition, we innovatively propose an X-Admin component that focuses on Schema Understanding by bridging the gap between abstract schema information and the user's natural language question. Aside from better learning with schema information, we experiment with Multi-LLMs for different components within the system to further boost its performance. By incorporating these techniques into our end-to-end framework, X-SQL, we have achieved Execution Accuracies of 84.9% on the Spider-Dev dataset and 82.5% on the Spider-Test dataset. This outstanding performance establishes X-SQL as the leading Text-to-SQL framework based on open-source models.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.