Papers
Topics
Authors
Recent
2000 character limit reached

Uncertainty Quantification in Probabilistic Machine Learning Models: Theory, Methods, and Insights (2509.05877v1)

Published 7 Sep 2025 in stat.ML, cs.AI, and cs.LG

Abstract: Uncertainty Quantification (UQ) is essential in probabilistic machine learning models, particularly for assessing the reliability of predictions. In this paper, we present a systematic framework for estimating both epistemic and aleatoric uncertainty in probabilistic models. We focus on Gaussian Process Latent Variable Models and employ scalable Random Fourier Features-based Gaussian Processes to approximate predictive distributions efficiently. We derive a theoretical formulation for UQ, propose a Monte Carlo sampling-based estimation method, and conduct experiments to evaluate the impact of uncertainty estimation. Our results provide insights into the sources of predictive uncertainty and illustrate the effectiveness of our approach in quantifying the confidence in the predictions.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 22 likes about this paper.