Papers
Topics
Authors
Recent
2000 character limit reached

Hybrid Fourier Neural Operator-Plasma Fluid Model for Fast and Accurate Multiscale Simulations of High Power Microwave Breakdown (2509.05799v1)

Published 6 Sep 2025 in physics.plasm-ph, cs.AI, cs.LG, and physics.comp-ph

Abstract: Modeling and simulation of High Power Microwave (HPM) breakdown, a multiscale phenomenon, is computationally expensive and requires solving Maxwell's equations (EM solver) coupled with a plasma continuity equation (plasma solver). In this work, we present a hybrid modeling approach that combines the accuracy of a differential equation-based plasma fluid solver with the computational efficiency of FNO (Fourier Neural Operator) based EM solver. Trained on data from an in-house FDTD-based plasma-fluid solver, the FNO replaces computationally expensive EM field updates, while the plasma solver governs the dynamic plasma response. The hybrid model is validated on microwave streamer formation, due to diffusion ionization mechanism, in a 2D scenario for unseen incident electric fields corresponding to entirely new plasma streamer simulations not included in model training, showing excellent agreement with FDTD based fluid simulations in terms of streamer shape, velocity, and temporal evolution. This hybrid FNO based strategy delivers significant acceleration of the order of 60X compared to traditional simulations for the specified problem size and offers an efficient alternative for computationally demanding multiscale and multiphysics simulations involved in HPM breakdown. Our work also demonstrate how such hybrid pipelines can be used to seamlessly to integrate existing C-based simulation codes with Python-based machine learning frameworks for simulations of plasma science and engineering problems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.