Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Depth-Aware Super-Resolution via Distance-Adaptive Variational Formulation (2509.05746v1)

Published 6 Sep 2025 in cs.CV

Abstract: Single image super-resolution traditionally assumes spatially-invariant degradation models, yet real-world imaging systems exhibit complex distance-dependent effects including atmospheric scattering, depth-of-field variations, and perspective distortions. This fundamental limitation necessitates spatially-adaptive reconstruction strategies that explicitly incorporate geometric scene understanding for optimal performance. We propose a rigorous variational framework that characterizes super-resolution as a spatially-varying inverse problem, formulating the degradation operator as a pseudodifferential operator with distance-dependent spectral characteristics that enable theoretical analysis of reconstruction limits across depth ranges. Our neural architecture implements discrete gradient flow dynamics through cascaded residual blocks with depth-conditional convolution kernels, ensuring convergence to stationary points of the theoretical energy functional while incorporating learned distance-adaptive regularization terms that dynamically adjust smoothness constraints based on local geometric structure. Spectral constraints derived from atmospheric scattering theory prevent bandwidth violations and noise amplification in far-field regions, while adaptive kernel generation networks learn continuous mappings from depth to reconstruction filters. Comprehensive evaluation across five benchmark datasets demonstrates state-of-the-art performance, achieving 36.89/0.9516 and 30.54/0.8721 PSNR/SSIM at 2 and 4 scales on KITTI outdoor scenes, outperforming existing methods by 0.44dB and 0.36dB respectively. This work establishes the first theoretically-grounded distance-adaptive super-resolution framework and demonstrates significant improvements on depth-variant scenarios while maintaining competitive performance across traditional benchmarks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.