Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Revealing the Numeracy Gap: An Empirical Investigation of Text Embedding Models (2509.05691v1)

Published 6 Sep 2025 in cs.CL and cs.AI

Abstract: Text embedding models are widely used in natural language processing applications. However, their capability is often benchmarked on tasks that do not require understanding nuanced numerical information in text. As a result, it remains unclear whether current embedding models can precisely encode numerical content, such as numbers, into embeddings. This question is critical because embedding models are increasingly applied in domains where numbers matter, such as finance and healthcare. For example, Company X's market share grew by 2\% should be interpreted very differently from Company X's market share grew by 20\%, even though both indicate growth in market share. This study aims to examine whether text embedding models can capture such nuances. Using synthetic data in a financial context, we evaluate 13 widely used text embedding models and find that they generally struggle to capture numerical details accurately. Our further analyses provide deeper insights into embedding numeracy, informing future research to strengthen embedding model-based NLP systems with improved capacity for handling numerical content.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.