Papers
Topics
Authors
Recent
2000 character limit reached

Few-Shot Query Intent Detection via Relation-Aware Prompt Learning (2509.05635v1)

Published 6 Sep 2025 in cs.CL and cs.IR

Abstract: Intent detection is a crucial component of modern conversational systems, since accurately identifying user intent at the beginning of a conversation is essential for generating effective responses. Recent efforts have focused on studying this problem under a challenging few-shot scenario. These approaches primarily leverage large-scale unlabeled dialogue text corpora to pretrain LLMs through various pretext tasks, followed by fine-tuning for intent detection with very limited annotations. Despite the improvements achieved, existing methods have predominantly focused on textual data, neglecting to effectively capture the crucial structural information inherent in conversational systems, such as the query-query relation and query-answer relation. To address this gap, we propose SAID, a novel framework that integrates both textual and relational structure information in a unified manner for model pretraining for the first time. Building on this framework, we further propose a novel mechanism, the query-adaptive attention network (QueryAdapt), which operates at the relation token level by generating intent-specific relation tokens from well-learned query-query and query-answer relations explicitly, enabling more fine-grained knowledge transfer. Extensive experimental results on two real-world datasets demonstrate that SAID significantly outperforms state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.