Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Natural Language-Programming Language Software Traceability Link Recovery Needs More than Textual Similarity (2509.05585v1)

Published 6 Sep 2025 in cs.SE and cs.AI

Abstract: In the field of software traceability link recovery (TLR), textual similarity has long been regarded as the core criterion. However, in tasks involving natural language and programming language (NL-PL) artifacts, relying solely on textual similarity is limited by their semantic gap. To this end, we conducted a large-scale empirical evaluation across various types of TLR tasks, revealing the limitations of textual similarity in NL-PL scenarios. To address these limitations, we propose an approach that incorporates multiple domain-specific auxiliary strategies, identified through empirical analysis, into two models: the Heterogeneous Graph Transformer (HGT) via edge types and the prompt-based Gemini 2.5 Pro via additional input information. We then evaluated our approach using the widely studied requirements-to-code TLR task, a representative case of NL-PL TLR. Experimental results show that both the multi-strategy HGT and Gemini 2.5 Pro models outperformed their original counterparts without strategy integration. Furthermore, compared to the current state-of-the-art method HGNNLink, the multi-strategy HGT and Gemini 2.5 Pro models achieved average F1-score improvements of 3.68% and 8.84%, respectively, across twelve open-source projects, demonstrating the effectiveness of multi-strategy integration in enhancing overall model performance for the requirements-code TLR task.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.