Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The Token Tax: Systematic Bias in Multilingual Tokenization (2509.05486v1)

Published 5 Sep 2025 in cs.CL and cs.AI

Abstract: Tokenization inefficiency imposes structural disadvantages on morphologically complex, low-resource languages, inflating compute resources and depressing accuracy. We evaluate 10 LLMs on AfriMMLU (9,000 MCQA items; 5 subjects; 16 African languages) and show that fertility (tokens/word) reliably predicts accuracy. Higher fertility consistently predicts lower accuracy across all models and subjects. We further find that reasoning models (DeepSeek, o1) consistently outperform non-reasoning peers across high and low resource languages in the AfriMMLU dataset, narrowing accuracy gaps observed in prior generations. Finally, translating token inflation to economics, a doubling in tokens results in quadrupled training cost and time, underscoring the token tax faced by many languages. These results motivate morphologically aware tokenization, fair pricing, and multilingual benchmarks for equitable NLP.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube