Papers
Topics
Authors
Recent
2000 character limit reached

STL-based Optimization of Biomolecular Neural Networks for Regression and Control (2509.05481v1)

Published 5 Sep 2025 in cs.LG, q-bio.MN, and q-bio.QM

Abstract: Biomolecular Neural Networks (BNNs), artificial neural networks with biologically synthesizable architectures, achieve universal function approximation capabilities beyond simple biological circuits. However, training BNNs remains challenging due to the lack of target data. To address this, we propose leveraging Signal Temporal Logic (STL) specifications to define training objectives for BNNs. We build on the quantitative semantics of STL, enabling gradient-based optimization of the BNN weights, and introduce a learning algorithm that enables BNNs to perform regression and control tasks in biological systems. Specifically, we investigate two regression problems in which we train BNNs to act as reporters of dysregulated states, and a feedback control problem in which we train the BNN in closed-loop with a chronic disease model, learning to reduce inflammation while avoiding adverse responses to external infections. Our numerical experiments demonstrate that STL-based learning can solve the investigated regression and control tasks efficiently.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.