Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

PLanTS: Periodicity-aware Latent-state Representation Learning for Multivariate Time Series (2509.05478v1)

Published 5 Sep 2025 in cs.LG and cs.AI

Abstract: Multivariate time series (MTS) are ubiquitous in domains such as healthcare, climate science, and industrial monitoring, but their high dimensionality, limited labeled data, and non-stationary nature pose significant challenges for conventional machine learning methods. While recent self-supervised learning (SSL) approaches mitigate label scarcity by data augmentations or time point-based contrastive strategy, they neglect the intrinsic periodic structure of MTS and fail to capture the dynamic evolution of latent states. We propose PLanTS, a periodicity-aware self-supervised learning framework that explicitly models irregular latent states and their transitions. We first designed a period-aware multi-granularity patching mechanism and a generalized contrastive loss to preserve both instance-level and state-level similarities across multiple temporal resolutions. To further capture temporal dynamics, we design a next-transition prediction pretext task that encourages representations to encode predictive information about future state evolution. We evaluate PLanTS across a wide range of downstream tasks-including multi-class and multi-label classification, forecasting, trajectory tracking and anomaly detection. PLanTS consistently improves the representation quality over existing SSL methods and demonstrates superior runtime efficiency compared to DTW-based methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube