An Empirical Analysis of Discrete Unit Representations in Speech Language Modeling Pre-training (2509.05359v1)
Abstract: This paper investigates discrete unit representations in Speech LLMs (SLMs), focusing on optimizing speech modeling during continual pre-training. In this paper, we systematically examine how model architecture, data representation, and training robustness influence the pre-training stage in which we adapt existing pre-trained LLMs to the speech modality. Our experiments highlight the role of speech encoders and clustering granularity across different model scales, showing how optimal discretization strategies vary with model capacity. By examining cluster distribution and phonemic alignments, we investigate the effective use of discrete vocabulary, uncovering both linguistic and paralinguistic patterns. Additionally, we explore the impact of clustering data selection on model robustness, highlighting the importance of domain matching between discretization training and target applications.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.