Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Crosscoding Through Time: Tracking Emergence & Consolidation Of Linguistic Representations Throughout LLM Pretraining (2509.05291v1)

Published 5 Sep 2025 in cs.CL, cs.AI, and cs.LG

Abstract: LLMs learn non-trivial abstractions during pretraining, like detecting irregular plural noun subjects. However, it is not well understood when and how specific linguistic abilities emerge as traditional evaluation methods such as benchmarking fail to reveal how models acquire concepts and capabilities. To bridge this gap and better understand model training at the concept level, we use sparse crosscoders to discover and align features across model checkpoints. Using this approach, we track the evolution of linguistic features during pretraining. We train crosscoders between open-sourced checkpoint triplets with significant performance and representation shifts, and introduce a novel metric, Relative Indirect Effects (RelIE), to trace training stages at which individual features become causally important for task performance. We show that crosscoders can detect feature emergence, maintenance, and discontinuation during pretraining. Our approach is architecture-agnostic and scalable, offering a promising path toward more interpretable and fine-grained analysis of representation learning throughout pretraining.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 11 posts and received 77 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube