Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Scaling Performance of Large Language Model Pretraining (2509.05258v1)

Published 5 Sep 2025 in cs.DC and cs.AI

Abstract: LLMs show best-in-class performance across a wide range of natural language processing applications. Training these models is an extremely computationally expensive task; frontier AI research companies are investing billions of dollars into supercomputing infrastructure to train progressively larger models on increasingly massive datasets. Unfortunately, information about the scaling performance and training considerations of these large training pipelines is scarce in public literature. Working with large-scale datasets and models can be complex and practical recommendations are scarce in the public literature for tuning training performance when scaling up LLMs. In this paper, we aim to demystify the LLM pretraining pipeline somewhat - in particular with respect to distributed training, managing large datasets across hundreds of nodes, and scaling up data parallelism with an emphasis on fully leveraging available GPU compute capacity.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com