Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Dual-Domain Perspective on Degradation-Aware Fusion: A VLM-Guided Robust Infrared and Visible Image Fusion Framework (2509.05000v1)

Published 5 Sep 2025 in cs.CV

Abstract: Most existing infrared-visible image fusion (IVIF) methods assume high-quality inputs, and therefore struggle to handle dual-source degraded scenarios, typically requiring manual selection and sequential application of multiple pre-enhancement steps. This decoupled pre-enhancement-to-fusion pipeline inevitably leads to error accumulation and performance degradation. To overcome these limitations, we propose Guided Dual-Domain Fusion (GD2Fusion), a novel framework that synergistically integrates vision-LLMs (VLMs) for degradation perception with dual-domain (frequency/spatial) joint optimization. Concretely, the designed Guided Frequency Modality-Specific Extraction (GFMSE) module performs frequency-domain degradation perception and suppression and discriminatively extracts fusion-relevant sub-band features. Meanwhile, the Guided Spatial Modality-Aggregated Fusion (GSMAF) module carries out cross-modal degradation filtering and adaptive multi-source feature aggregation in the spatial domain to enhance modality complementarity and structural consistency. Extensive qualitative and quantitative experiments demonstrate that GD2Fusion achieves superior fusion performance compared with existing algorithms and strategies in dual-source degraded scenarios. The code will be publicly released after acceptance of this paper.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.