Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

An Emotion Recognition Framework via Cross-modal Alignment of EEG and Eye Movement Data (2509.04938v1)

Published 5 Sep 2025 in cs.MM

Abstract: Emotion recognition is essential for applications in affective computing and behavioral prediction, but conventional systems relying on single-modality data often fail to capture the complexity of affective states. To address this limitation, we propose an emotion recognition framework that achieves accurate multimodal alignment of Electroencephalogram (EEG) and eye movement data through a hybrid architecture based on cross-modal attention mechanism. Experiments on the SEED-IV dataset demonstrate that our method achieve 90.62% accuracy. This work provides a promising foundation for leveraging multimodal data in emotion recognition

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.