Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Quantum Fourier Transform Based Denoising: Unitary Filtering for Enhanced Speech Clarity (2509.04851v1)

Published 5 Sep 2025 in cs.SD, cs.ET, and eess.AS

Abstract: This paper introduces a quantum-inspired denoising framework that integrates the Quantum Fourier Transform (QFT) into classical audio enhancement pipelines. Unlike conventional Fast Fourier Transform (FFT) based methods, QFT provides a unitary transformation with global phase coherence and energy preservation, enabling improved discrimination between speech and noise. The proposed approach replaces FFT in Wiener and spectral subtraction filters with a QFT operator, ensuring consistent hyperparameter settings for fair comparison. Experiments on clean speech, synthetic tones, and noisy mixtures across diverse signal to noise ratio (SNR) conditions, demonstrate statistically significant gains in SNR, with up to 15 dB improvement and reduced artifact generation. Results confirm that QFT based denoising offers robustness under low SNR and nonstationary noise scenarios without additional computational overhead, highlighting its potential as a scalable pathway toward quantum-enhanced speech processing.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.