Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Code Review Without Borders: Evaluating Synthetic vs. Real Data for Review Recommendation (2509.04810v1)

Published 5 Sep 2025 in cs.SE, cs.CL, and cs.LG

Abstract: Automating the decision of whether a code change requires manual review is vital for maintaining software quality in modern development workflows. However, the emergence of new programming languages and frameworks creates a critical bottleneck: while large volumes of unlabelled code are readily available, there is an insufficient amount of labelled data to train supervised models for review classification. We address this challenge by leveraging LLMs to translate code changes from well-resourced languages into equivalent changes in underrepresented or emerging languages, generating synthetic training data where labelled examples are scarce. We assume that although LLMs have learned the syntax and semantics of new languages from available unlabelled code, they have yet to fully grasp which code changes are considered significant or review-worthy within these emerging ecosystems. To overcome this, we use LLMs to generate synthetic change examples and train supervised classifiers on them. We systematically compare the performance of these classifiers against models trained on real labelled data. Our experiments across multiple GitHub repositories and language pairs demonstrate that LLM-generated synthetic data can effectively bootstrap review recommendation systems, narrowing the performance gap even in low-resource settings. This approach provides a scalable pathway to extend automated code review capabilities to rapidly evolving technology stacks, even in the absence of annotated data.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 1 like.