Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

VARMA-Enhanced Transformer for Time Series Forecasting (2509.04782v1)

Published 5 Sep 2025 in cs.LG and cs.AI

Abstract: Transformer-based models have significantly advanced time series forecasting. Recent work, like the Cross-Attention-only Time Series transformer (CATS), shows that removing self-attention can make the model more accurate and efficient. However, these streamlined architectures may overlook the fine-grained, local temporal dependencies effectively captured by classical statistical models like Vector AutoRegressive Moving Average model (VARMA). To address this gap, we propose VARMAformer, a novel architecture that synergizes the efficiency of a cross-attention-only framework with the principles of classical time series analysis. Our model introduces two key innovations: (1) a dedicated VARMA-inspired Feature Extractor (VFE) that explicitly models autoregressive (AR) and moving-average (MA) patterns at the patch level, and (2) a VARMA-Enhanced Attention (VE-atten) mechanism that employs a temporal gate to make queries more context-aware. By fusing these classical insights into a modern backbone, VARMAformer captures both global, long-range dependencies and local, statistical structures. Through extensive experiments on widely-used benchmark datasets, we demonstrate that our model consistently outperforms existing state-of-the-art methods. Our work validates the significant benefit of integrating classical statistical insights into modern deep learning frameworks for time series forecasting.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube