Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Enhancing Self-Driving Segmentation in Adverse Weather Conditions: A Dual Uncertainty-Aware Training Approach to SAM Optimization (2509.04735v1)

Published 5 Sep 2025 in cs.CV and cs.AI

Abstract: Recent advances in vision foundation models, such as the Segment Anything Model (SAM) and its successor SAM2, have achieved state-of-the-art performance on general image segmentation benchmarks. However, these models struggle in adverse weather conditions where visual ambiguity is high, largely due to their lack of uncertainty quantification. Inspired by progress in medical imaging, where uncertainty-aware training has improved reliability in ambiguous cases, we investigate two approaches to enhance segmentation robustness for autonomous driving. First, we introduce a multi-step finetuning procedure for SAM2 that incorporates uncertainty metrics directly into the loss function, improving overall scene recognition. Second, we adapt the Uncertainty-Aware Adapter (UAT), originally designed for medical image segmentation, to driving contexts. We evaluate both methods on CamVid, BDD100K, and GTA driving datasets. Experiments show that UAT-SAM outperforms standard SAM in extreme weather, while SAM2 with uncertainty-aware loss achieves improved performance across diverse driving scenes. These findings underscore the value of explicit uncertainty modeling for safety-critical autonomous driving in challenging environments.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.