Papers
Topics
Authors
Recent
2000 character limit reached

Toward Faithfulness-guided Ensemble Interpretation of Neural Network

Published 4 Sep 2025 in cs.LG and cs.AI | (2509.04588v1)

Abstract: Interpretable and faithful explanations for specific neural inferences are crucial for understanding and evaluating model behavior. Our work introduces \textbf{F}aithfulness-guided \textbf{E}nsemble \textbf{I}nterpretation (\textbf{FEI}), an innovative framework that enhances the breadth and effectiveness of faithfulness, advancing interpretability by providing superior visualization. Through an analysis of existing evaluation benchmarks, \textbf{FEI} employs a smooth approximation to elevate quantitative faithfulness scores. Diverse variations of \textbf{FEI} target enhanced faithfulness in hidden layer encodings, expanding interpretability. Additionally, we propose a novel qualitative metric that assesses hidden layer faithfulness. In extensive experiments, \textbf{FEI} surpasses existing methods, demonstrating substantial advances in qualitative visualization and quantitative faithfulness scores. Our research establishes a comprehensive framework for elevating faithfulness in neural network explanations, emphasizing both breadth and precision

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.