Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 179 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Serialized Output Prompting for Large Language Model-based Multi-Talker Speech Recognition (2509.04488v1)

Published 1 Sep 2025 in cs.CL, cs.AI, cs.SD, and eess.AS

Abstract: Prompts are crucial for task definition and for improving the performance of LLMs (LLM)-based systems. However, existing LLM-based multi-talker (MT) automatic speech recognition (ASR) systems either omit prompts or rely on simple task-definition prompts, with no prior work exploring the design of prompts to enhance performance. In this paper, we propose extracting serialized output prompts (SOP) and explicitly guiding the LLM using structured prompts to improve system performance (SOP-MT-ASR). A Separator and serialized Connectionist Temporal Classification (CTC) layers are inserted after the speech encoder to separate and extract MT content from the mixed speech encoding in a first-speaking-first-out manner. Subsequently, the SOP, which serves as a prompt for LLMs, is obtained by decoding the serialized CTC outputs using greedy search. To train the model effectively, we design a three-stage training strategy, consisting of serialized output training (SOT) fine-tuning, serialized speech information extraction, and SOP-based adaptation. Experimental results on the LibriMix dataset show that, although the LLM-based SOT model performs well in the two-talker scenario, it fails to fully leverage LLMs under more complex conditions, such as the three-talker scenario. The proposed SOP approach significantly improved performance under both two- and three-talker conditions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: