Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Low-rank matrix and tensor approximations: advancing efficiency of machine-learning interatomic potentials (2509.04440v1)

Published 4 Sep 2025 in physics.chem-ph

Abstract: Machine-learning interatomic potentials (MLIPs) have become a mainstay in computationally-guided materials science, surpassing traditional force fields due to their flexible functional form and superior accuracy in reproducing physical properties of materials. This flexibility is achieved through mathematically-rigorous basis sets that describe interatomic interactions within a local atomic environment. The number of parameters in these basis sets influences both the size of the training dataset required and the computational speed of the MLIP. Consequently, compressing MLIPs by reducing the number of parameters is a promising route to more efficient simulations. In this work, we use low-rank matrix and tensor factorizations under fixed-rank constraints to achieve this compression. In addition, we demonstrate that an algorithm with automatic rank augmentation helps to find a deeper local minimum of the fitted potential. The methodology is verified using the Moment Tensor Potential (MTP) model and benchmarked on multi-component systems: a Mo-Nb-Ta-W medium-entropy alloy, molten LiF-NaF-KF, and a glycine molecular crystal. The proposed approach achieves up to 50% compression without any loss of MTP accuracy and can be applied to compress other MLIPs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com