SAMVAD: A Multi-Agent System for Simulating Judicial Deliberation Dynamics in India (2509.03793v1)
Abstract: Understanding the complexities of judicial deliberation is crucial for assessing the efficacy and fairness of a justice system. However, empirical studies of judicial panels are constrained by significant ethical and practical barriers. This paper introduces SAMVAD, an innovative Multi-Agent System (MAS) designed to simulate the deliberation process within the framework of the Indian justice system. Our system comprises agents representing key judicial roles: a Judge, a Prosecution Counsel, a Defense Counsel, and multiple Adjudicators (simulating a judicial bench), all powered by LLMs. A primary contribution of this work is the integration of Retrieval-Augmented Generation (RAG), grounded in a domain-specific knowledge base of landmark Indian legal documents, including the Indian Penal Code and the Constitution of India. This RAG functionality enables the Judge and Counsel agents to generate legally sound instructions and arguments, complete with source citations, thereby enhancing both the fidelity and transparency of the simulation. The Adjudicator agents engage in iterative deliberation rounds, processing case facts, legal instructions, and arguments to reach a consensus-based verdict. We detail the system architecture, agent communication protocols, the RAG pipeline, the simulation workflow, and a comprehensive evaluation plan designed to assess performance, deliberation quality, and outcome consistency. This work provides a configurable and explainable MAS platform for exploring legal reasoning and group decision-making dynamics in judicial simulations, specifically tailored to the Indian legal context and augmented with verifiable legal grounding via RAG.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.