Papers
Topics
Authors
Recent
2000 character limit reached

Drift Plus Optimistic Penalty -- A Learning Framework for Stochastic Network Optimization (2509.03762v1)

Published 3 Sep 2025 in cs.NI, cs.SY, and eess.SY

Abstract: We consider the problem of joint routing and scheduling in queueing networks, where the edge transmission costs are unknown. At each time-slot, the network controller receives noisy observations of transmission costs only for those edges it selects for transmission. The network controller's objective is to make routing and scheduling decisions so that the total expected cost is minimized. This problem exhibits an exploration-exploitation trade-off, however, previous bandit-style solutions cannot be directly applied to this problem due to the queueing dynamics. In order to ensure network stability, the network controller needs to optimize throughput and cost simultaneously. We show that the best achievable cost is lower bounded by the solution to a static optimization problem, and develop a network control policy using techniques from Lyapunov drift-plus-penalty optimization and multi-arm bandits. We show that the policy achieves a sub-linear regret of order $O(\sqrt{T}\log T)$, as compared to the best policy that has complete knowledge of arrivals and costs. Finally, we evaluate the proposed policy using simulations and show that its regret is indeed sub-linear.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.