Papers
Topics
Authors
Recent
2000 character limit reached

Learning functions through Diffusion Maps (2509.03758v1)

Published 3 Sep 2025 in cs.LG, cs.NA, and math.NA

Abstract: We propose a data-driven method for approximating real-valued functions on smooth manifolds, building on the Diffusion Maps framework under the manifold hypothesis. Given pointwise evaluations of a function, the method constructs a smooth extension to the ambient space by exploiting diffusion geometry and its connection to the heat equation and the Laplace-Beltrami operator. To address the computational challenges of high-dimensional data, we introduce a dimensionality reduction strategy based on the low-rank structure of the distance matrix, revealed via singular value decomposition (SVD). In addition, we develop an online updating mechanism that enables efficient incorporation of new data, thereby improving scalability and reducing computational cost. Numerical experiments, including applications to sparse CT reconstruction, demonstrate that the proposed methodology outperforms classical feedforward neural networks and interpolation methods in terms of both accuracy and efficiency.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.