Papers
Topics
Authors
Recent
2000 character limit reached

Accurate and scalable deep Maxwell solvers using multilevel iterative methods (2509.03622v1)

Published 3 Sep 2025 in physics.comp-ph, cs.CE, cs.LG, and physics.app-ph

Abstract: Neural networks have promise as surrogate partial differential equation (PDE) solvers, but it remains a challenge to use these concepts to solve problems with high accuracy and scalability. In this work, we show that neural network surrogates can combine with iterative algorithms to accurately solve PDE problems featuring different scales, resolutions, and boundary conditions. We develop a subdomain neural operator model that supports arbitrary Robin-type boundary condition inputs, and we show that it can be utilized as a flexible preconditioner to iteratively solve subdomain problems with bounded accuracy. We further show that our subdomain models can facilitate the construction of global coarse spaces to enable accelerated, large scale PDE problem solving based on iterative multilevel domain decomposition. With two-dimensional Maxwell's equations as a model system, we train a single network to simulate large scale problems with different sizes, resolutions, wavelengths, and dielectric media distribution. We further demonstrate the utility of our platform in performing the accurate inverse design of multi-wavelength nanophotonic devices. Our work presents a promising path to building accurate and scalable multi-physics surrogate solvers for large practical problems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.