Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Diffusion-RL Based Air Traffic Conflict Detection and Resolution Method (2509.03550v1)

Published 2 Sep 2025 in cs.AI

Abstract: In the context of continuously rising global air traffic, efficient and safe Conflict Detection and Resolution (CD&R) is paramount for air traffic management. Although Deep Reinforcement Learning (DRL) offers a promising pathway for CD&R automation, existing approaches commonly suffer from a "unimodal bias" in their policies. This leads to a critical lack of decision-making flexibility when confronted with complex and dynamic constraints, often resulting in "decision deadlocks." To overcome this limitation, this paper pioneers the integration of diffusion probabilistic models into the safety-critical task of CD&R, proposing a novel autonomous conflict resolution framework named Diffusion-AC. Diverging from conventional methods that converge to a single optimal solution, our framework models its policy as a reverse denoising process guided by a value function, enabling it to generate a rich, high-quality, and multimodal action distribution. This core architecture is complemented by a Density-Progressive Safety Curriculum (DPSC), a training mechanism that ensures stable and efficient learning as the agent progresses from sparse to high-density traffic environments. Extensive simulation experiments demonstrate that the proposed method significantly outperforms a suite of state-of-the-art DRL benchmarks. Most critically, in the most challenging high-density scenarios, Diffusion-AC not only maintains a high success rate of 94.1% but also reduces the incidence of Near Mid-Air Collisions (NMACs) by approximately 59% compared to the next-best-performing baseline, significantly enhancing the system's safety margin. This performance leap stems from its unique multimodal decision-making capability, which allows the agent to flexibly switch to effective alternative maneuvers.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.