Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Enhancing Speech Large Language Models through Reinforced Behavior Alignment (2509.03526v1)

Published 25 Aug 2025 in cs.CL and eess.AS

Abstract: The recent advancements of LLMs have spurred considerable research interest in extending their linguistic capabilities beyond text to other modalities, which leads to emergence of speech-based LLMs (SpeechLMs) with capability of processing user request in either speech or textual formats. However, owing to inter-modal discrepancies, these SpeechLMs still exhibit a significant performance gap compared to their text-based LLM counterparts in instruction-following, particularly when confronted with the dynamic and variable nature of user speech. To address this challenge, this paper introduces a framework termed Reinforced Behavior Alignment (RBA), designed to bolster the language generation proficiency of SpeechLMs. Instead of relying on supervised fine-tuning from human annotations, RBA employs a self-synthesis methodology to generate extensive, high-fidelity alignment data by a powerful teacher LLM. Then SpeechLMs is aligned its behavior with that of a teacher using a reinforcement learning-based approach. Experimental results demonstrate that this method effectively enhances the instruction-following capabilities of SpeechLMs that outperform conventional distillation baselines. Crucially, we demonstrate that RBA can be seamlessly extended to tasks such including spoken question answering and speech-to-text translation, attaining state-of-the-art performance on open benchmarks with only self-generated data.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube