Papers
Topics
Authors
Recent
2000 character limit reached

Amplifying Effective CXL Memory Bandwidth for LLM Inference via Transparent Near-Data Processing (2509.03377v1)

Published 3 Sep 2025 in cs.AR

Abstract: LLM inference is bottlenecked by the limited bandwidth of CXL-based memory used for capacity expansion. We introduce CXL-NDP, a transparent near-data processing architecture that amplifies effective CXL bandwidth without requiring changes to the CXL.mem interface or AI models. CXL-NDP integrates a precision-scalable bit-plane layout for dynamic quantization with transparent lossless compression of weights and KV caches directly within the CXL device. In end-to-end serving, CXL-NDP improves throughput by 43%, extends the maximum context length by 87%, and reduces the KV cache footprint by 46.9% without accuracy loss. Hardware synthesis confirms its practicality with a modest silicon footprint, lowering the barrier for adopting efficient, scalable CXL-based memory in generative AI infrastructure.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.