Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

TopoMap: A Feature-based Semantic Discriminator of the Topographical Regions in the Test Input Space (2509.03242v1)

Published 3 Sep 2025 in cs.LG and cs.SE

Abstract: Testing Deep Learning (DL)-based systems is an open challenge. Although it is relatively easy to find inputs that cause a DL model to misbehave, the grouping of inputs by features that make the DL model under test fail is largely unexplored. Existing approaches for DL testing introduce perturbations that may focus on specific failure-inducing features, while neglecting others that belong to different regions of the feature space. In this paper, we create an explicit topographical map of the input feature space. Our approach, named TopoMap, is both black-box and model-agnostic as it relies solely on features that characterise the input space. To discriminate the inputs according to the specific features they share, we first apply dimensionality reduction to obtain input embeddings, which are then subjected to clustering. Each DL model might require specific embedding computations and clustering algorithms to achieve a meaningful separation of inputs into discriminative groups. We propose a novel way to evaluate alternative configurations of embedding and clustering techniques. We used a deep neural network (DNN) as an approximation of a human evaluator who could tell whether a pair of clusters can be discriminated based on the features of the included elements. We use such a DNN to automatically select the optimal topographical map of the inputs among all those that are produced by different embedding/clustering configurations. The evaluation results show that the maps generated by TopoMap consist of distinguishable and meaningful regions. In addition, we evaluate the effectiveness of TopoMap using mutation analysis. In particular, we assess whether the clusters in our topographical map allow for an effective selection of mutation-killing inputs. Experimental results show that our approach outperforms random selection by 35% on average on killable mutants; by 61% on non-killable ones.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube