Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Tabular foundation model for GEOAI benchmark problems BM/AirportSoilProperties/2/2025 (2509.03191v1)

Published 3 Sep 2025 in cs.LG

Abstract: This paper presents a novel application of the Tabular Prior-Data Fitted Network (TabPFN) - a transformer-based foundation model for tabular data - to geotechnical site characterization problems defined in the GEOAI benchmark BM/AirportSoilProperties/2/2025. Two tasks are addressed: (1) predicting the spatial variation of undrained shear strength (su) across borehole depth profiles, and (2) imputing missing mechanical parameters in a dense-site dataset. We apply TabPFN in a zero-training, few-shot, in-context learning setting - without hyper-parameter tuning - and provide it with additional context from the big indirect database (BID). The study demonstrates that TabPFN, as a general-purpose foundation model, achieved superior accuracy and well-calibrated predictive distributions compared to a conventional hierarchical Bayesian model (HBM) baseline, while also offering significant gains in inference efficiency. In Benchmark Problem #1 (spatial su prediction), TabPFN outperformed the HBM in prediction accuracy and delivered an order-of-magnitude faster runtime. In Benchmark Problem #2 (missing mechanical parameter imputation), TabPFN likewise achieved lower RMSE for all target parameters with well-quantified uncertainties, though its cumulative computation cost was higher than HBM's due to its one-variable-at-a-time inference. These results mark the first successful use of a tabular foundation model in geotechnical modeling, suggesting a potential paradigm shift in probabilistic site characterization.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.